Skip to the content.

Useful Notes and Equations

For a comprehensive and thorough summary of the theory, check MuChenSun’s wonderful note here.

My own notes:

note_1.png

note_2.png

note_3.png

Useful Equations:


Textbook Exercises Attempts

Exercise 5.1 A wheel of unit radius is rolling to the right at a rate of 1 rad/s (see Figure 5.14; the dashed circle shows the wheel at \(t = 0\)).

fig_1.png

Exercise 5.2 The 3R planar open chain of Figure 5.15(a) is shown in its zero position.

fig_2.png

N.B. in figure part (a), the robot is not in its zero position!!!!

%% Exercise 5.2 

%  Part (a)
F_s = [0; 0; 0; 5; 0; 0];
Slist = [[0; 0; 1; 0; 0; 0], ...
         [0; 0; 1; 0;-1; 0], ...
         [0; 0; 1; 0;-2; 0]];
thetalist =[0; pi/4; 0];
J_s_T = transpose(JacobianSpace(Slist, thetalist));
tau = J_s_T * F_s;

%  Part (b)
F_s_b = [0; 0; 0; 0; 5; 0];
tau_b = J_s_T * F_s_b;
===================================================
>> tau_a

tau_a =

         0
         0
    3.5355

>> tau_b

tau_b =

         0
   -5.0000
   -8.5355

Exercise 5.3 Answer the following questions for the 4R planar open chain of Figure 5.15(b).

fig_3.png

Exercise 5.7 The RRP robot in Figure 5.19 is shown in its zero position.

fig_4.png

%% Exercise 5.7

% Part (a)
SList = [[0; 0; 1; 0; 0; 0], ...
         [1; 0; 0; 0; 2; 0], ...
         [0; 0; 0; 0; 1; 0]];
thetalist = [pi/2; pi/2; 1];
M = [-1 0 0 0;
      0 0 1 3;
      0 1 0 2;
      0 0 0 1];
% T = FKinSpace(M, Slist, thetalist)
T_sb = FKinSpace(M, SList, thetalist);
% Js = JacobianSpace(Slist, thetalist)
J_s = JacobianSpace(SList, thetalist);

=======================================

>> T_sb

T_sb =

   -0.0000    1.0000   -0.0000   -0.0000
   -1.0000   -0.0000    0.0000    0.0000
         0    0.0000    1.0000    6.0000
         0         0         0    1.0000

>> J_s

J_s =

         0    0.0000         0
         0    1.0000         0
    1.0000         0         0
         0   -2.0000   -0.0000
         0    0.0000    0.0000
         0         0    1.0000
      
=======================================

% Part (b)
BList = [[0; 1; 0; 3; 0; 0], ...
        [-1; 0; 0; 0; 3; 0], ...
         [0; 0; 0; 0; 0; 1]];
T_bs = FKinBody(M, BList, thetalist);
J_b = JacobianBody(BList, thetalist);

=======================================

>> T_bs

T_bs =

   -0.0000    1.0000   -0.0000   -0.0000
   -1.0000   -0.0000    0.0000    0.0000
         0    0.0000    1.0000    6.0000
         0         0         0    1.0000

>> J_b

J_b =

         0   -1.0000         0
    0.0000         0         0
    1.0000         0         0
    0.0000         0         0
         0    4.0000         0
         0         0    1.0000

Exercise 5.26 The kinematics of the 7R WAM robot are given in Section 4.1.3.

fig_5.png

\[J_{\omega} = \begin{bmatrix} 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{bmatrix}\] \[J_{v} = \begin{bmatrix} -0.105 & 0 & 0.006 & -0.045 & 0 & 0.006 & 0 \\ -0.889 & 0.006 & 0 & -0.844 & 0.006 & 0 & 0 \\ 0 & -0.105 & 0.889 & 0 & 0 & 0 & 0 \\ \end{bmatrix}\]
%% Exercise 5.26
% Part (b)
J_b = [0 -1 0 0 -1 0 0;
       0 0 1 0 0 1 0;
       1 0 0 1 0 0 1;
       -0.105 0 0.006 -0.045 0 0.006 0;
       -0.889 0.006 0 -0.844 0.006 0 0;
       0 -0.105 0.889 0 0 0 0];
J_w = J_b(1:3,:);
J_v = J_b(4:6,:);
A_w = J_w * transpose(J_w);
[V_w D_w] = eig(A_w);
A_v = J_v * transpose(J_v);
[V_v D_v] = eig(A_v);

========================================

>> V_w

V_w =

     1     0     0
     0     1     0
     0     0     1

>> D_w

D_w =

     2     0     0
     0     2     0
     0     0     3

The length of the principal semi-axis is the sqrt of the eigenvalue. Therefore the length are \(\sqrt{2},\,\sqrt{2},\,\sqrt{3}\) resepectively. The direction of the semi-axis are V_w as shown above.

>> V_v

V_v =

   -0.9962    0.0067   -0.0872
    0.0872   -0.0004   -0.9962
    0.0067    1.0000    0.0002
    
>> D_v

D_v =

    0.0016         0         0
         0    0.8014         0
         0         0    1.5142

Again, the length are the sqrt of D_v, and the direction are V_v.